

- Thomas Kjeldsen, University of Bath
- Chris Rowlatt, University of Bath
- Gianni Vesuviano, UKCEH
- Alice Fitch, UKCEH
- James Miller, UKCEH
- Sisay Debele, University of Surrey
- Simon Dooley, Cardiff City

SURREY **Catchment-scale** benefits (flow reduction) and disbenefits (debris blocking risk) of greengrey infrastructure in urban rivers

Natural

Environment

Research Council

Engineering and Physical Sciences Research Council

Arts and Humanities Research Council

Benefits and dis-benefits

Project Aims

- » O1: Using existing GIS datasets to map green and grey land-use across urban river catchments draining to locations in Cardiff city where trash screens have been installed.
- » **O2:** Create new land use scenarios to **evaluate the hydrological benefit** (%change in flow) provided by existing GI. Parameterise and run the ANaRM model to evaluate those scenarios.
- » O3: Develop machine learning algorithm to identify instances of debris blocking of trash screens based on CCTV images and existing water level recordings.
- » **O4:** Use logistic regression to assess the relative contribution (statistical significance) of grey and green land-use characteristics on **the risk of blocking** across sites.

Value	Land use classes
1	Tree cover
2	Permanent water bodies
3	Roads
4	Grassland
5	Buildings
6	Cropland
7	Impermeable Surface
8	Shrubland

Adapted Nature-based solutions Rational Method (ANaRM)

Calibrated and validated in Birmingham, UK

» Rational method – urban, small catchment suitable – adapted to include FARL

SURREY

- $Qp = 0.278CiA \times FARL^{3.445}$ gridded peak flow for any location in the catchment (m³/s)
- » **C** = 1.3 × Cv (volumetric runoff coefficient) –
- 0-1, depends on land cover type
- » *i* = average rainfall intensity (mm/hr) > taken from FEH22 rainfall model
- » **A** = flow accumulation raster area (km²)
- » FARL flood attenuation from rivers/lakes (FEH catchment descriptor)

Miller et al. (2023) Landscape & Urban Planning, 104737

Nant Y Garth

Heol Gabriel

Llanon Road

Tongwynlais

Rhiwbina Wenalt Rd

Rhiwbina Heol Y Deri

Rhiwbina Pen Y Dre

In total, 793 images of the Tongwynlais site were manually screened and labelled.

- 80% of the data was used for training
- 20% for validation

Label images as either **blocked** or **unblocked**

Image Subtraction

Histogram equalisation

Pixel Value

Pixel Value

Input image cropped to 475x475 px

Table 4 Results of Logistic Regression and Time Taken to Train and Test Model with Dataset				
Train Accuracy (%)	Test Accuracy (%)	Time Taken		
95.1	87.4	17.9 s		
97.1	91.0	19.7 s		
98.7	84.7	20.5 s		
100	89.2	23.4 s		
100	90.1	25.9 s		
91.6	85.5	20.8 s		
96.2	87.4	22.4 s		
98.0	85.6	26.8 s		
92.3	87.4	30.3 s		
100	91.0	325 s		
100	90.1	1,470 s		
	Train Accuracy (%) 95.1 97.1 98.7 100 100 91.6 96.2 98.0 92.3 100 100	Interface Train Accuracy (%) Test Accuracy (%) 95.1 87.4 97.1 91.0 98.7 84.7 100 89.2 100 90.1 91.6 85.5 96.2 87.4 98.0 85.6 92.3 87.4 100 91.0 100 90.1		

Table 4. Desults of Legistic Degression and Time Taken to Train and Test Model with Dataset

Note. This Table contains results from cost function optimisations using 3000 model iterations and a learning rate of 0.01 using a Mid-range CPU (Intel Celeron N5095 @ 2.00GHz) with 16 G.B. RAM.

» Set-up ANARM model for Cardiff and trash screen catchments

» Relate blocking frequency to land-use characteristics

» Define future land-use scenarios

» Investigate impact of land-use change -> Reduced flood peaks vs increased blocking frequency